Cross-Domain Few-Shot Graph Classification
نویسندگان
چکیده
We study the problem of few-shot graph classification across domains with nonequivalent feature spaces by introducing three new cross-domain benchmarks constructed from publicly available datasets. also propose an attention-based encoder that uses congruent views graphs, one contextual and two topological views, to learn representations task-specific information for fast adaptation, task-agnostic knowledge transfer. run exhaustive experiments evaluate performance contrastive meta-learning strategies. show when coupled metric-based frameworks, proposed achieves best average meta-test accuracy all benchmarks.
منابع مشابه
Few-Shot Adversarial Domain Adaptation
This work provides a framework for addressing the problem of supervised domain adaptation with deep models. The main idea is to exploit adversarial learning to learn an embedded subspace that simultaneously maximizes the confusion between two domains while semantically aligning their embedding. The supervised setting becomes attractive especially when there are only a few target data samples th...
متن کاملFew-Shot Learning with Graph Neural Networks
We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...
متن کاملFew-shot Classification by Learning Disentangled Representations
Machine learning has improved state-of-the art performance in numerous domains, by using large amounts of data. In reality, labelled data is often not available for the task of interest. A fundamental problem of artificial intelligence is finding a representation that can generalize to never seen before classes. In this research, the power of generative models is combined with disentangled repr...
متن کاملFew-to-few Cross-domain Object Matching
Cross-domain object matching refers to the task of inferring unknown alignment between objects in two data collections that do not have a shared data representation. In recent years several methods have been proposed for solving the special case that assumes each object is to be paired with exactly one object, resulting in a constrained optimization problem over permutations. A related problem ...
متن کاملMeta-Learning for Semi-Supervised Few-Shot Classification
In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2022
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v36i6.20642